RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College affiliated to University of Calcutta)

B.A./B.Sc. SIXTH SEMESTER EXAMINATION, JUNE 2022

THIRD YEAR (BATCH 2019-22)

Date : 13/06/2022 Time : 11.00 am – 1.00

MATHEMATICS (HONOURS)

: 11.00 am – 1.00 pm Paper : DSE-3 [Calculus of Variation & Classical Mechanics]

Full Marks : 50

[6]

[6]

[6]

[4]

[2]

[All the symbols have their usual meaning]

<u>Group – A</u>

Answer <u>all</u> the questions, maximum one can score 25.

1. Let $\overline{x}(t)$ be the curve which minimizes the functional $I[x(t)] = \int_0^1 (x^2 + \dot{x}^2) dx \left(\text{where } \dot{x} = \frac{dx}{dt} \right)$, satisfying x(0) = 0, x(1) = 1. Then find $\overline{x}(0,5)$.

2. Find the extremum of the functional
$$I[y(x)] = \int_0^1 ((y')^2 + 2y^2) dx$$
. $y(0) = 0, y(1) = 1$. Using Ritz method (for n =2).

3. Show that Jacobi condition for the central field of extremals for

$$I[y(x)] = \int_{0}^{\frac{\pi}{2}} \left(xyy' + y^{2} - \frac{(y')^{2}}{2} \right) dx$$

is satisfied. Further show that for extremals the functional has weak minima.

4. Obtain Euler-Ostrogradsky equation for

$$I\left[u\left(x, y, z\right)\right] = \iiint_{D} \left[\left(\frac{\partial u}{\partial x}\right)^{2} + \left(\frac{\partial u}{\partial y}\right)^{2} + \left(\frac{\partial u}{\partial z}\right)^{2}\right] dx dy dz : \text{ where the values of } u \text{ are prescribed on the}$$

boundary C of the domain D.

- 5. Define Central field.
- 6. Find the extremal of the functional $I[y(x), z(x)] = \int_0^1 (4 + (y')^2 + (z')^2) dx$ that satisfy the boundary conditions y(0) = 0, y(1) = 2, z(0) = 0 and z(1) = 4. [6]

<u>Group – B</u>

Answer <u>all</u> the questions, maximum one can score 25.

7. Given
$$L = \frac{e^t}{2} (\dot{x}^2 - k^2 x^2)$$
, where k is a constant. Show that $\ddot{x} + \dot{x} + k^2 x = 0.$ [4]

- 8. Given the Lagrangian $L = \frac{m}{2} (\dot{r}^2 + r^2 \dot{\theta}^2) V(r)$, find the Hamiltonian and hence Hamilton's canonical equations. [6]
- 9. A particle of unit mass moves in the direction of x-axis such that it has the Lagrangian $L = \frac{\dot{x}^4}{l^2} + \frac{x\dot{x}^2}{2} x^2$ Let $Q = \dot{x}^2\ddot{x}$ represents a force (not arising from a potential) acting on the particle
 in the x-direction. If $x = 1 = \dot{x}$ when t = 0 then find \dot{x} when x = 0.5. [6]

10. In a dynamical system the kinetic energy and potential energy are given by

$$T = \frac{1}{2} \left(\frac{\dot{q}_1^2}{a + bq_2^2} + \dot{q}_2^2 \right), V = c + dq_2^2$$

[7]

[7]

where a, b, c, d > 0. Determine $q_1(t)$ and $q_2(t)$ using Routhian.

11. Deduce Lagrange's equation of motion (1st kind) for holonomic and non-holonomic cases.